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INTRODUCTION

Transmission of microbial diseases via seeds is a sig-
nificant concern in agriculture and can lead to con-
siderable yield loss (Morris et  al.,  2007; Darrasse 
et al., 2010, 2018; Burdman & Walcott, 2012; Mansfield 
et al., 2012; Shade et al., 2017; Giovanardi et al., 2018; 
Johnston-Monje et  al.,  2021). Some estimates pre-
dict that the usage of contaminated seeds can lead to 
yield reductions ranging from 15% to 90% (Vishunavat 
et al., 2023). This issue becomes especially critical in 
the face of a growing global population with an increas-
ingly urgent demand for food, coupled with the looming 

threat of climate change that puts conventional agricul-
tural methods' productivity at risk. Bacteriophages as 
specialized viruses of bacteria could, in this context, 
offer a promising basis for developing targeted and 
sustainable biocontrol strategies.

Phages were discovered over  a century ago 
by d'Herelle and Twort and were used for the first 
biocontrol trials shortly after that (Mallmann & 
Hemstreet,  1924). Nevertheless, with the discov-
ery of a broad range of antibiotics, phages fell into 
oblivion due to their high specificity and lack of de-
tailed knowledge. With the current rise of antibi-
otic or copper-resistant bacteria, classical methods 
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Abstract
Pathogens resistant to classical control strategies pose a significant threat 
to crop yield, with seeds being a major transmission route. Bacteriophages, 
viruses targeting bacteria, offer an environmentally sustainable biocontrol so-
lution. In this study, we isolated and characterized two novel phages, Athelas 
and Alfirin, which infect Pseudomonas syringae and Agrobacterium fabrum, 
respectively, and included the recently published Pfeifenkraut phage infect-
ing Xanthomonas translucens. Using a simple immersion method, phages 
coated onto seeds successfully lysed bacteria post air-drying. The seed 
coat mucilage (SCM), a polysaccharide–polymer matrix exuded by seeds, 
plays a critical role in phage binding. Seeds with removed mucilage formed 
five to 10 times less lysis zones compared to those with mucilage. The po-
dovirus Athelas showed the highest mucilage dependency. Phages from 
the Autographiviridae family also depended on mucilage for seed adhesion. 
Comparative analysis of Arabidopsis SCM mutants suggested the diffusible 
cellulose as a key component for phage binding. Long-term activity tests dem-
onstrated high phage stability on seed surfaces and significantly increasing 
seedling survival rates in the presence of pathogens. Using non-virulent host 
strains enhanced phage presence on seeds but also has potential limitations. 
These findings highlight phage-based interventions as promising, sustainable 
strategies for combating pathogen resistance and improving crop yield.
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to fight the disease are becoming less effective 
(Pedroncelli & Puopolo,  2023; Sagar et  al.,  2019; 
Zhang et al., 2015). This has sparked a renaissance 
in phage research and moved them into the focus of 
researchers, policymakers and companies over the 
past decade (Salmond & Fineran, 2015). In this con-
text, biocontrol strategies centred around phages 
show significant promise, given the vast diversity of 
naturally occurring viruses (Dion et al., 2020).

In agriculture, different phage application meth-
ods have been explored recently, including spray-
ing phage suspensions on the phyllosphere (Balogh 
et  al.,  2008), treatment of irrigation water in pot ex-
periments (Álvarez et al., 2019), treating seed tubers 
(McKenna et al., 2001) and coating leaves with formu-
lations to protect the phages from radiation (Balogh 
et al., 2003). However, it has been reported by differ-
ent studies that transmission via seeds appears as 
a major route for plant pathogen transmission, and 
effective plant biocontrol via seed coating has been 
addressed by only a few studies in recent years. This 
includes, for example, the protection of melon plants 
from Acidovorax citrulli by phage application (Rahimi-
Midani et al., 2020) or the decontamination of seeds 
from Xanthomonas campestris (Xcc) (Holtappels 
et al., 2022). Importantly, the establishment of effec-
tive phage coatings requires an understanding of the 
binding mechanism, enrichment strategies and phage 
stability on seed surfaces, which has not been sys-
tematically addressed thus far.

One important seed product of many plant fam-
ilies is the seed coat mucilage (SCM), which is 
present in economically relevant plant families like 
Lamiaceae and Solanaceae, as well as in the model 
plant Arabidopsis thaliana, among many others 
(Western,  2012; Yang et  al.,  2012). The SCM is a 
layer of pectin, hemicelluloses, cellulose and proteins 
produced by the epidermal cells during seed devel-
opment. It is released after imbibing the mature seed 
with water and subsequently starts to swell and cover 
the seed with a glycopolymer-matrix. Although the 
composition can differ among ecotypes of the same 
species, the major sugar-building blocks are fucose, 
arabinose, rhamnose, galactose, glucose, mannose, 
xylose and galacturonic acid (Voiniciuc et al., 2016). In 
the literature, the presence of mucilage was linked to 
securing anchorage in the soil, managing water levels 
around the seed and providing a benefit in the process 
of dispersal (Kreitschitz et al., 2021; Western, 2012). 
In this study, we assessed the influence of the SCM 
on phage binding and stability.

Different phage morphotypes are characterized by 
their specific receptor-binding proteins (RBPs), encom-
passing tail fibres and tail spikes. These proteins play a 
crucial role in recognizing chemical patterns on the sur-
face of the host bacterium (Taslem Mourosi et al., 2022; 
Witte et al., 2021). While certain receptors bind to the 

sugar moieties of polysaccharides, others target pro-
teins in the cell envelope (Bertozzi Silva et al., 2016). 
Consequently, phage adhesion to seeds may be facili-
tated by physical properties like the mesh-like polymer 
structure of the mucilage entrapping the phage parti-
cles or through direct chemical interaction between the 
phage RBPs and specific sugar residues.

In this study, we systematically assessed phage 
binding and the relevance of the SCM by focusing on 
the model plant Arabidopsis thaliana as well as repre-
sentative bacterial plant pathogens. We describe two 
newly isolated phages infecting the prominent plant 
pathogens Pseudomonas syringae and Agrobacterium 
fabrum and further included members from an E. coli 
phage collection in our tests (Maffei et al., 2021). While all 
phages tested showed binding to wild-type Arabidopsis 
seeds, several phages showed significantly reduced 
binding to seeds with a removed mucilage layer. This 
included particularly phages of the Autographiviridae 
family, which were highly dependent on the presence 
of a mucilage. Testing several Arabidopsis seed mu-
tants suggested a particular importance of the cellu-
lose component of the mucilage. Further experiments 
confirmed a high stability of phages on seed surfaces 
without significant loss of infectivity. We are therefore 
confident that this study will serve as an important step 
towards establishing future phage-based seed applica-
tions in agriculture.

EXPERIMENTAL PROCEDURES

Bacterial strains and growth conditions

Agrobacterium fabrum (strain C58) formerly known as 
Agrobacterium tumefaciens and Pseudomonas syrin-
gae (DSM 50274) (Young et  al.,  1978) were used as 
host strains for phage isolation in this study. A. tume-
faciens cultures were grown on Lysogeny Broth (LB), 
whereas P. syringae (DSM 50274) and Xanthomonas 
translucens pv. translucens (DSM 18974) (Sapkota 
et  al.,  2020) cultures were grown on a nutrient agar 
(5.0 g peptone, 3.0 g yeast extract and 15.0 g Agar in 
1000 mL of dH2O.). All cultures were inoculated from 
single colonies in the respective liquid media for over-
night cultures. The cultivation of the bacterial strains 
was performed at 30°C on a shaker at 150 rpm.

Phage isolation

The soil samples for Agrobacterium phage Alfirin were 
retrieved from the rhizosphere of a winter wheat plant at 
the IBG-2 crop garden (50.909277, 6.413403—Jülich, 
Germany) and phage Athelas was isolated from a 
wastewater sample donated by the Forschungszentrum 
Jülich wastewater plant (50.902547168169825, 
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6.404891888790708—Jülich, Germany). The isola-
tion of the phages was performed as previously de-
scribed (Erdrich et al., 2022). Briefly, the virus particles 
within the environmental samples were solubilized 
using 10 mL phosphate-buffered saline (100 mM NaCl, 
2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, 1 mM 
CaCl2 and 0.5 mM MgCl2; pH 7.5) and incubated for 3 h 
at room temperature. Afterwards, the samples were 
centrifuged at 5000 g for 15 min to remove solid par-
ticles. The supernatants were filtered through 0.2 μm 
pore size membrane filters (Sarstedt; Filtropur S, PES). 
A 1-mL aliquot of the filtered supernatant was mixed 
with 3.5 mL 0.4% NB soft agar and 100 μL of a densely-
grown overnight culture (OD600 of 1) of the host and 
directly plated using the double agar overlay method 
(Kauffman & Polz,  2018). Plates were incubated at 
30°C overnight. Purification of the phage samples was 
carried out by re-streaking single plaques with an in-
oculation loop on a fresh double agar overlay contain-
ing the host bacterium. This procedure was repeated at 
least three times.

All phages will be available to the public via the 
German Collection of Microorganisms and Cell Cultures 
(DSMZ) after publication. The annotated genomes 
were deposited on NCBI and are available under the 
accession number OR997969 (Alfirin) and OR997970 
(Athelas).

DNA isolation

Phage DNA was isolated according to the manufactur-
er's protocol of the Norgen Biotek Phage DNA Isolation 
Kit (Norgen Biotek, Thorold, Canada). Briefly, 2 mL of 
Phage suspension (108 pfu/mL) was treated with 1 U/
μL DNAse (Invitrogen, Carlsbad, CA, USA) to remove 
free DNA, followed by DNase I inactivation at 75°C for 
5 min. After that the viral particles were lysed within 
the provided kit buffer. After incubation at 65°C for 
15 min, 320 μL isopropanol was added. After that the 
sample was bound to a column and washed twice, be-
fore eluded with buffer and sored at −20°C until further 
usage.

DNA sequencing and genome assembly

Assembly of the DNA library was performed using the 
NEBNext Ultra II DNA Library Prep Kit for Illumina, 
according to the manufacturer's instructions, and 
shotgun-sequenced using the Illumina MiSeq platform 
with a read length of 2 × 150 bp (Illumina, San Diego, 
CA, USA). For each phage, a subset of 100,000 reads 
was sampled, and a de novo assembly was performed 
using CLC genomics workbench 20.0.4 (QIAGEN, 
Hilden, Germany). Finally, the obtained contigs were 
manually curated and checked for gene coverage.

Gene prediction and functional annotation

The phage open reading frames (ORFs) were predicted 
with Pharokka v 1.3.2 (Bouras et al., 2023) using de-
fault settings in terminase reorientation mode using 
PHANOTATE (McNair et  al.,  2019), tRNAs were pre-
dicted with tRNAscan-SE 2.0 (Chan et al., 2021), tm-
RNAs were predicted with Aragorn (Laslett, 2004) and 
CRISPRs were checked with CRT (Bland et al., 2007). 
Functional annotation was generated by matching 
each CDS to the PHROGs (Terzian et al., 2021), VFDB 
(Chen,  2004) and CARD (Alcock et  al.,  2019) data-
bases using MMseqs2 (Steinegger & Söding,  2017) 
and PyHMMER (Larralde & Zeller, 2023). Contigs were 
matched to their closest hit in the INPHARED database 
(Cook et  al.,  2021) using mash (Ondov et  al.,  2016). 
Plots were created with the pyCirclizen package. 
Additionally, all identified sequences were later curated, 
usually manually, using online NCBI Blast against the 
non-redundant (NR) database 45. Conserved protein 
domains were further predicted using the batch func-
tion of NCBI Conserved Domain Database (CDD) 46 
with the e-value cut-off of 0.01.

Electron microscopy of phage virions

For electron microscopy of single phage particles, 
3.5 μL purified phage suspension was fixated on a glow 
discharged (15 mA, 30 s) carbon-coated copper grid 
(CF300-CU, carbon film 300 mesh copper) and stained 
with 2% (w/v) uranyl acetate. After air drying, the sam-
ple was analysed with a TEM Talos L120C (Thermo 
Scientific, Dreieich, Germany) at an acceleration of 
120 kV.

Sterilization of Arabidopsis thaliana seeds

The seed coat was surface-sterilized by vortexing for 
5 min in 50% ethanol (EtOH) containing 0.5% Triton x-
100. Afterwards, the 50% EtOH was removed and re-
placed by 96% EtOH; the samples were inverted once. 
Afterwards, all EtOH was removed immediately. The 
seeds were transferred within a small volume of 96% 
EtOH onto sterile filter paper using a pipette. Finally, 
they were air-dried.

Phage binding to wild-type seeds of 
Arabidopsis thaliana

Approximately 1000 surface-sterilized Arabidopsis thal-
iana Col-0 seeds were incubated in a sterile Eppendorf 
tube with 1 mL bacteriophage suspension of a concen-
tration of 108 Pfu/mL or higher for 30 minutes. This was 
followed by two subsequent washing steps in ddH2O to 
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remove non-bound phage particles. Afterwards, evap-
orated (approx. 30–45 min).

Influence of seed coat mutants on 
phage binding

The following seed coat mutants were required from 
Nottingham Arabidopsis Stock Centre (NASC): ttg1-
21 (GK-580A05); csla2-3 (SALK_149092); rhm2 
(SALK_076300) and muci70-1 (SALK_129524). The 
cesa5 and sbt 1.7 mutants were present at the IBG-2. 
All seeds were germinated on sterile ½ MS plates and 
subsequently propagated on soil using a 16 h day/8 h 
night regime.

Afterwards, the harvested seeds were checked using 
ruthenium red staining (Voiniciuc, 2016) for their typical 
morphological appearance under the microscope. The 
seeds were subsequently used for phage-binding as-
says, as described above.

For mechanical removal of the mucilage layer, ap-
prox. 1000 EtOH surface sterilized wild-type seeds 
were incubated for 5 min in 1 mL ddH2O, followed by 
two rounds of 15 min 30 Hz/s shaking in a ball-mill 
(Retsch MM200, Retsch, Germany) without beads 
(Voiniciuc, 2016). The mucilage containing supernatant 
was removed, and the seeds were washed in in two 
subsequent steps with ddH2O. Afterwards, the seeds 
were placed on sterile filter papers and air-dried for 
30 min under a laminar flow bench. Complete removal 
of the mucilage was verified by ruthenium red staining 
and microscopy before further use.

Phylogeny of PRB proteins and in silico 
protein folding

Ancestral states were inferred using the maximum like-
lihood method (Nei & Kumar, 2000) and the JTT matrix-
based model (Jones et al., 1992). The tree (Figure 5.) 
shows a set of possible amino acids (states) at each 
ancestral node based on their inferred likelihood at 
site 1. Initial tree(s) for the heuristic search were ob-
tained automatically by applying Neighbour-Join and 
BioNJ algorithms to a matrix of pairwise distances es-
timated using the JTT model and then selecting the 
topology with superior log likelihood value. The rates 
among sites were treated as being uniform among sites 
(Uniform rates option). This analysis involved 24 amino 
acid sequences. There were a total of 1386 positions 
in the final dataset. 1000 Bootstrap trees were gener-
ated for the final tree. Evolutionary analyses were con-
ducted in MEGA11 (Tamura et al., 2021).

The 3D protein structures of phage RBPs were 
predicted using the ColabFold v1.5.3 webserver with 
AlphaFold2 using MMseqs2 with the default settings 
(Mirdita et al., 2022).

Shelf life of phages coated onto 
plant seeds

To evaluate the stability and activity of coated phages 
on seeds, the Agrobacterium phage Alfirin, the 
Pseudomonas phage Athelas and the Xanthomonas 
phage Pfeifenkraut (Erdrich et al., 2022) were bound to 
Arabidopsis thaliana Col-0 seeds as described above. 
The coated seeds were then stored within microcen-
trifuge tubes at 4°C for up to 28 days. At defined time 
points, a subset of seeds was taken from the tubes and 
incubated at 28°C for 24 h on a double agar overlay 
containing the respective host bacterium. Development 
of a lysis zone around the seed was indicative of the 
presence of infectious counted as phage particles ac-
tivity. Finally, the total amount of seeds as well as the 
proportion exhibiting lysis zones around them were 
counted. We compared the stability to phages stored 
in SM buffer at the same conditions and over the same 
timeframe.

Survival of seedlings in presence of the 
pathogen and co-inoculation with 
a non-pathogenic host ‘Booster’

The survival in the presence of the pathogen was as-
sessed by infecting surface sterilized Col-0 seeds 
artificially by imbibing them in a bacterial solution 
of Agrobacterium fabrum C58 at an OD600 of 0.4 for 
30 min and subsequent air-drying on sterile filter paper 
(condition pathogen-Atum). The same procedure was 
used for the phage as described above (condition 
phage-only control). For the ‘Booster’-condition, we 
sought to explore the efficacy of co-incubating seeds 
with a non-pathogenic strain devoid of the Ti-Plasmid 
(Morton et al., 2014). Our objective was to evaluate this 
approach as a means of locally enrich the presence of 
phages. In this case, phage Alfirin (1*109 pfu/mL) was 
coated together with the avirulent Agrobacterium fab-
rum C58 ΔpTi onto Col-0 seeds at a MOI of 5 (condition 
‘booster’). Multiplicity of infection (MOI) is the ratio of 
infectious phage particles to target cells (bacteria) in a 
specific volume, offering a quantitative measure of the 
infection dynamics within a defined biological system.

Avirulent Agrobacterium fabrum C58 ΔpTi at an 
OD600 of 0.01 ~ 5*107 cfu/mL, was coated onto seeds 
as a negative control for the booster. All seeds were 
sown on ½ MS Agar plates and placed into the cli-
mate chamber with 12/12 h day/night regime at 22°C 
at day and 19°C at night. Scans of the plates were 
taken at 14 days after sowing to evaluate the plant 
growth by calculating the leaf area per plant. All ger-
minated seedlings surpassing the 2-cotyledon stage 
without signs of necrosis were counted as alive. 
Subsequently, the seedlings were transferred to a LB 
medium-based double agar overlay, containing the 
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wildtype Agrobacterium fabrum C58, at an OD600 of 
0.2 to assess the presence of the phage in the differ-
ent conditions.

RESULTS

Phage isolation, morphology, annotation 
and taxonomy

The novel phages were isolated from winter wheat 
rhizosphere and wastewater on the campus of the 
Forschungszentrum Jülich. The Agrobacterium 
phage Alfirin was retrieved from the rhizos-
phere sample at the IBG-2 crop garden using 
Agrobacterium strain C58 as a host. Pseudomonas 
phage Athelas was isolated from a wastewater sam-
ple at Forschungszentrum Jülich wastewater plant 
using Pseudomonas syringae pv. lapsa (DSM 50274) 
(Figure 1A). Phage Alfirin formed clear plaques with 
a mean diameter of 0.96 mm. Phage Athelas formed 
large and clear plaques with an average diameter of 
6.86 mm (Figure 1B).

The isolated phages were sequenced using Illumina 
MiSeq short-read technology, and the genomic features 
of phage Alfirin, Athelas and Pfeifenkraut are summa-
rized in Table 1, and all other phages used in this study 

in Table S1. Briefly, the genomes of the novel phages 
Alfirin and Athelas are 46 and 40 kb in size, with a GC 
content of 53% and 57%, respectively (Figure S1A,B).

While Alfirin is predicted to follow the headful pack-
aging mechanism (Leffers & Basaveswara Rao, 1996), 
phage Athelas has short directed terminal repeats 
(DTRs) of 221 bp. The genomic ends were determined 
using Phage Term (Garneau et al., 2017). A prerequi-
site for phage biocontrol is a lytic lifestyle of the bac-
teriophage, therefore the lifestyle was predicted using 
PhageAI, a machine-learning tool which compares 
the genomes of over 20,000 publicly available phages 
(Tynecki et al., 2020). Both newly isolated phages were 
classified as virulent. This is further supported by the 
absence of genes coding for an integrase within the 
genomes.

A comparison of the genomes of our isolates with 
their closest relatives revealed that phage Athelas is 
part of a described species and phage Alfirin is its own 
new species. With an average nucleotide identity of 
99%, Athelas is a member of the phage NOI species 
and belongs to the family of Autographiviridae. When 
compared with the closest relatives, phage Athelas 
clusters with phages isolated on Pseudomonas syrin-
gae pv tomato, as shown in nucleotide and coding se-
quence comparison (Figures S2 and S3). The genome 
of phage Alfirin shares a 58% sequence identity with 

F I G U R E  1   Phage morphology of the 
novel Agrobacterium phage Alfirin, and 
the Pseudomonas phage Athelas as well 
as Xanthomonas phage Pfeifenkraut, 
which was previously described (Erdrich 
et al., 2022). (A) Plaque morphologies 
of phages on 0.4% soft agar. Scale 
Bar: 2 cm; (B) Stereo microscopy of 
single plaques. Scale bar: 1 mm; (C) 
Transmission electron microscopy (TEM) 
images of virion particles. The phage 
isolates were negative stained with uranyl 
acetate. Scale bar: 100 nm.

 17517915, 2024, 6, D
ow

nloaded from
 https://envirom

icro-journals.onlinelibrary.w
iley.com

/doi/10.1111/1751-7915.14507 by Forschungszentrum
 Jülich G

m
bH

 R
esearch C

enter, W
iley O

nline L
ibrary on [09/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 17  |      ERDRICH et al.

Agrobacterium phage Atu_02 and therefore forms a 
new species (Figure S3).

Binding of phages to Arabidopsis 
seeds and influence of the SCM

In the following, the binding of the newly isolated phages, 
as well as the previously described Xanthomonas phage 
Pfeifenkraut, to Arabidopsis seeds, was investigated.

To test the ability of phages to adhere to plant seeds, 
we used surface sterilized Arabidopsis thaliana Col-0, 
which is well-known to produce mucilaginous seeds 
(Francoz et al.,  2015) and has the ability to generate 
large amounts of seeds in the relatively short time of 
2–3 months (Boyes et  al.,  2001). To discriminate be-
tween binding and random co-translocation of the 
phages on the seeds, we washed the seeds twice in 
ddH2O. To detect infectious phage particles bound 
to Arabidopsis seeds, we harnessed one of the hall-
marks of phage biology—plaque assays—by placing 
the seeds, after treatment, onto a bacterial lawn con-
taining the respective host species. A visible lysis zone 
which manifests as clearance of the bacterial lawn is 
consequently indicative of the binding of phage parti-
cles to the seed surface (Bacteriophages Methods and 
Protocols, Volume IV, 2019), Figure 2A.

After a first observation of phage binding to seeds of 
A. thaliana we asked the question, which mechanism 
is responsible for binding of the phages. Given that 
Arabidopsis, like other SCM-producing plants (Francoz 
et  al.,  2015), is known to release a matrix of sugars, 
pectin and cellulose upon contact with water, we con-
ducted tests to evaluate whether the mucilage plays a 
role, either structurally or chemically, in the attachment 
of phages to the seeds. Using wildtype seeds and seeds 
were the mucilage has been removed (Voiniciuc, 2016), 
(Figure 2B), we could show that the mucilage is crucial 
for seed binding for Pseudomonas phage Athelas (73% 
reduction) and for Xanthomonas phage Pfeifenkraut 
(94% reduction) (Figure 2B,C). From this initial set of 
phages, only phage Alfirin was not significantly depen-
dent on the presence of the mucilage.

Phages of the Autographiviridae 
family significantly depend on the 
presence of the mucilage

In the initial set of phages, phages Pfeifenkraut and 
Athelas showed a clear dependency on the presence of 
the mucilage. The strongest effect was reproducibly ob-
served for podovirus Athelas. To test whether this trend 
holds for morphologically similar viruses, we tested all 
podoviruses from the E. coli BASEL collection (Maffei 
et al., 2021) and also included the model E. coli phage 
T7. We could show that T7, as well as Bas64-Bas68, T
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      |  7 of 17PHAGE SEED COATING FOR PLANT BIOCONTROL

belonging to the Autographiviridae family, showed a 
strong dependence on the mucilage (Figure 3). The po-
dovirus Bas69 belonging to the Schitoviradae showed 
no significant difference in seed adhesion with or 
without mucilage. These results indicate that the size 
(surface cross-section) alone cannot explain the differ-
ences in binding behaviour among different phages of 
similar size. The observed pattern suggests that taxo-
nomically related phages also show similar adhesion 
properties to the mucilage of plant seeds.

Influence of seed coat mutants on 
phage binding

To further elucidate which components of the SCM 
are relevant for phage binding, we set out to test dif-
ferent Arabidopsis seed coat mutants with phage 
Athelas because it was affected most strongly by 
the presence or absence of the mucilage and pro-
duces large plaques, enabling robust quantification 
(Figure 4). As a control, we used phage Alfirin as a 

F I G U R E  2   Phage binding to seeds and influence of artificial removal of the seed mucilage. (A) Seed-coating-workflow; binding of 
phage particles on seeds of Arabidopsis thaliana. (B) Wild-type Col-0 seed stained with 0.01% ruthenium red solution before and after 
mechanical removal of the mucilage. (C) Percentage of lysis zones detected around seeds for Agrobacterium phage Alfirin, Pseudomonas 
phage Athelas or Xanthomonas phage Pfeifenkraut incubated on seed with or without mucilage. The bar plot shows means of seeds from 3 
independent experiments for each condition, where for each plate in an experiment the number of seeds showing a lysis zones is expressed 
as percentage from the total number on the respective plate.; n = 50–300 seeds per plate. Error bars represent standard deviation. A two-
way ANOVA was significant F (2.49) = 45.94, a subsequent HSD was performed: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (D) Double 
agar overlay with phage-coated seeds; upper lane unchanged Arabidopsis seeds, lower lane Arabidopsis seeds where the mucilage was 
mechanically removed. White boxes, display close-ups of individual seeds with lysis zones.
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8 of 17  |      ERDRICH et al.

control that does not require mucilage. The rhm2, 
clsa2-3 and muci70-1 (Table 2) mutants showed no 
significant influence on phage binding, indicating that 
pectin does not seem to be required for phage bind-
ing. TRANSPARENT TESTA GLABRA1 (TTG1) is a 
master regulator involved in many processes and is 
required for mucilage production. The mutant ttg1-21 
had a significant impact on phage binding for phage 

Athelas, which confirms the observation that removal 
of the mucilage impacts phage Athelas binding to 
seeds. The second strongest impact was observed 
for the cellulose synthase five mutant (cesa5) that 
is required for the production of cellulose within the 
mucilage and for the correct layering of the mucilage 
(Sullivan et al., 2011). Deletion of cesa5 was reported 
to cause a reduction of diffusible cellulose within the 

F I G U R E  3   Binding of podovirions to seeds and influence of artificial removal of the seed mucilage. All BASEL featuring podovirus 
morphology were selected, as well as model phage T7. Percentage of plaques around seeds with and without mucilage. At least three 
independent experiments were performed for each phage and the number of seeds showing a lysis zones as well of the total number of 
seeds per plate was counted; N 50–300 seeds per plate. Data is presented as % of seeds surrounded by a lysis zone. A two-way ANOVA 
was significant F (6, 58) = 10,07; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns = not significant.

F I G U R E  4   Phage seed coating on different Arabidopsis mutants. Left panel phage Athelas; right panel phage Alfirin. Shown is the 
amount (%) of plaques detected on a double agar overlay post seed coating of the Arabidopsis mutants: muci70-1, csla2-3, rhm2, sbt1.7, 
cesa5 as well as the wild type A. thaliana (Col-0) and mechanically removed wild-type seeds. Below each column, the respective seed 
stained with 0.01% ruthenium red solution is depicted. The experiment was performed in three independent replicates for each SCM mutant 
and the number of seeds showing a lysis zones as well of the total number of seeds per plate was counted; N 50–300 seeds per plate. A 
two-way ANOVA was significant for phage Athelas F (7, 83) = 27,37 and showed one significant difference for phage Alfirin F (5, 17) = 3569. 
For both a subsequent HSD followed: **p < 0.01; ***p < 0.001; ****p < 0.0001.
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10 of 17  |      ERDRICH et al.

F I G U R E  5   Phylogenetic tree of phage receptor binding proteins (RBPs) and in silico folding. (A) Phylogenetic tree of phage RBPs. 
Ancestral states were inferred using the Maximum Likelihood method (Nei & Kumar, 2000) and the JTT matrix-based model (Jones 
et al., 1992). Evolutionary analyses were conducted in MEGA11 (Tamura et al., 2021). (B) Protein structures of selected phage RBPs. The 
3D protein structures were predicted using the ColabFold v1.5.3 webserver (Mirdita et al., 2022). N-termini are displayed in the left upper 
corner of each protein model.
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      |  11 of 17PHAGE SEED COATING FOR PLANT BIOCONTROL

Arabidopsis mucilage. Also, the subtilisin-like serine 
proteases 1.7 (sbt1.7) mutant did impact Athelas adhe-
sion to the seed. This result hints at the importance of 
accessible mucilage sugars for Athelas since sbt1.7-
mutant does not release mucilage properly upon 
hydration (Rautengarten et  al.,  2008). Transmission 
electron microscopy further supported our hypothesis 
that Athelas directly interact with polymeric fibre struc-
tures within the mucilage of Arabidopsis (Figure S4).

As expected, phage Alfirin was not affected by the 
mutants tested in this study, which is consistent with 
previous experiments showing that the absence of mu-
cilage only weakly affected phage Alfirin.

Comparative analysis of phage tail fibres

Testing of phage binding to different Arabidopsis mu-
tants suggested the relevance of the mucilage polysac-
charide fraction, more precisely, the diffusible cellulose, 
on phage binding. From previous studies, it is known 
that E. coli Autographiviridae (T3, T7 and Bas64-
Bas68) recognize components of bacterial lipopolysac-
charides (LPS) as a receptor (Ando et al., 2015; Maffei 
et al., 2021). This might indicate a similar mechanism 
for phage Athelas. To gain more insights into a potential 
specific chemical interaction with the seed mucilage, 
a set of RBP from the phages in this study and close 
relatives was compared phylogenetically and structur-
ally by in silico folding of the proteins (Figure  5). To 
further investigate the cause of this differential binding 
behaviour of phages with a similar capsid size as well 
as a short tail, we compared the host binding proteins 
of those phages. The phylogenetic tree of the tail fibres 
revealed that the Basel Autographiviridae are a sister 
group to Pseudomonas phage Athelas, which was also 
highly dependent on the mucilage Figure 5A. The simi-
larity of the tail fibres of these groups can also be seen 
in the structural 3D model computed with Alphafold 
(Figure 5B 1 and 2). The E. coli Autographiviridae (T3, 

T7 and Bas64-Bas68) were found to be dependent on 
the bacterial LPS in previous studies (Ando et al., 2015; 
Maffei et  al.,  2021). This hints into the direction of a 
similar mechanism for phage Athelas. Direct sequence 
comparison revealed that the N-terminal region showed 
higher conservation between those two regions than 
the C-terminal fraction. Another interesting observation 
is that phage Alfirins second tail fibre clusters together 
with phage Bas69 tail fibre which also was not signifi-
cantly impacted by the removal of the mucilage.

Shelf life of phages on seed surfaces

High stability of infectious phage particles on seed sur-
faces is a prerequisite for the establishment of effective 
phage-based biocontrol strategies. To test for this, we 
conducted experiments to determine the storage stabil-
ity of phages when attached to A. thaliana Col-0 seeds. 
For a timespan of more than 4 weeks, phages Alfirin 
and Pfeifenkraut showed high levels of stability when 
stored at 4°C. Phage Alfirin showed a binding of 99% 
and showed lysis zones for over 28 days and beyond 
(Figure 6A,B). A similar pattern was observed for phage 
Pfeifenkraut, with an initial average binding of 96%. 
Phage Athelas showed a lower initial binding with 88% 
and a notable reduction after 14 days (Figure 6 left). As 
phages were initially in SM buffer before coating, we 
performed a control experiment and could show that 
lysis zone creation was stable for all three phages for 
28 days and beyond (Figure 6 right).

‘Boosting’ local phage amplification at 
plant seeds

We further investigated the potential of locally increas-
ing the amount and longevity of phages in planta, by 
harnessing the phage's self-propagating ability. We 
co-inoculated phages together with a non-pathogenic 

F I G U R E  6   Stability of phage on Arabidopsis seeds stored at 4°C. (A) Shown is the percentage of seeds showing plaques when plated 
on a double agar lawn containing the host bacterium (A. tumefaciens for phage Alfirin, P. syringae for phage Athelas, and X. translucens for 
phage Pfeifenkraut). Portions of 50–200 seeds were tested at every time point indicated for each phage. (B) Control of phage storage in 
phage buffer. Displayed are the means of the three biological replicates, error bars indicate standard deviation.
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version of the host bacterium in low concentrations in 
addition to the phage. Provision of host cells for the 
phage was expected to lead to an amplification of the 
phage population, to keep phages in the system from 
the seed to the seedling. This, if successful, we hypoth-
esized, would reduce the need for large-scale produc-
tion of phage lysate prior to field application, which is 
impractical when envisioning phage usage by farmers. 
Additionally, the non-pathogenic bacterium might in-
habit a somewhat similar niche as the pathogens in the 
soil microbiome, providing further competition for re-
sources outside the plant. We tested this approach with 
Agrobacterium phage Alfirin, by adding a non-virulent 
Agrobacterium strain without the tumour-inducing plas-
mid (delta Ti) required for infection of the plant (Morton 
et  al.,  2014). We tested this local ‘boost’ of phage 
production with Arabidopsis. We could show that the 
survival rate and the leaf area are not significantly 
decreased in plants treated with the phage (Booster 
MOI5) compared to the control condition (Figure 7A,B). 
Nevertheless, we have to state that inoculation with the 
non-virulent bacterial strain still harmed the growth of 
the plants. This observation proposes a potential re-
sponse to the ‘non-virulent’ bacterium as well. The leaf 
area production was affected significantly by the non-
virulent as well as virulent strains. After 14 days in the 
climate chamber, we checked how many plants still had 
active phage particles on their surface and therefore 
transferred the seedlings to a bacterial lawn of A. tu-
mefaciens and checked for occurring lysis (Figure 7C). 
Only plants in the booster condition still showed clear 
lysis zones, this is indicating that the additional delivery 
of a non-virulent-host in combination with the phage 
can improve phage longevity in planta, and should be 
investigated further as an application strategy, whereby 
the effect of the bacterium used to propagate the phage 
on the plant must be carefully considered.

DISCUSSION

Bacteriophages are still an untapped resource that 
could advance sustainable biocontrol strategies of 
plant pathogenic bacteria. This is due to the main char-
acteristics of lytic phages: host specificity and the abil-
ity to self-propagate. In this study, we investigated the 
binding of phages to Arabidopsis seeds with a special 
emphasis on the influence of the SCM during this inter-
action. We confirmed the binding of all phages tested 
and observed that for some, the SCM is crucial for 
successful seed binding. We linked this dependence 
to specific mucilage components. Finally, we move to-
wards more application-oriented questions, affirming 
the stability of phages on mucilage-producing seeds. 
Additionally, we observed enhanced seed/seedling vi-
ability under pathogenic pressure.

The importance of protecting seeds and young plant 
parts against pathogenic microbes cannot be over-
stated. In fact, bacterial transmission via seeds was 
reported with significant yield losses in many cases 
(Burdman & Walcott, 2012; Darrasse et al., 2010, 2018; 
Giovanardi et  al.,  2018; Johnston-Monje et  al.,  2021; 
Mansfield et  al.,  2012; Morris et  al.,  2007; Shade 
et al., 2017). The application of phages as a treatment 
strategy has gained special interest in recent years 
(Holtappels et al., 2022; Ogunyemi et al., 2019; Voronina 
et al., 2019). Successful treatment of plant seeds has 
recently been demonstrated for Xanthomonas (Xcc) in 
cabbage, for example, as a potential treatment in plant 
nurseries. Here, the authors showed significant symp-
tom reduction and seed cleaning of artificially contami-
nated seeds when applying high phage concentrations 
(Holtappels et  al.,  2022). A further study showed 
the protection of rice seedlings with phages against 
Xanthomonas oryzae (Xoo), with an emphasis on pre-
infection phage treatment, since this showed the stron-
gest protection (Ogunyemi et al., 2019). Apparently, also 
the pre-treatment of seed tubers increased plant germi-
nation, as shown for potatoes (Voronina et al., 2019).

Altogether, these studies emphasize the high po-
tential of seed- and pre-treatment strategies, but the 
mechanisms by which bacteriophages are kept in close 
proximity to the seeds or young plant parts and their 
interaction with surface components remain to be un-
derstood. In this study, we demonstrated that for cer-
tain types of phages, the SCM has a crucial part in the 
binding process to the seed. Our experiments have 
further validated the remarkable stability of infectious 
phage particles on seed surfaces, extending beyond a 
period of 4 weeks, which likely can be further improved 
by optimizing seed coating formulations. This will open 
up a variety of options for future applications on seeds 
that do not produce mucilage naturally.

Mucilage shows multiple independent origins 
throughout plant evolution (Yang et al., 2012), probably 
due to its functions like maintaining a moist environment 
for the seedling in a microenvironment, anchorage to 
soil and increased dispersal (Kreitschitz et al., 2021). 
On top of that, the mucilage could also be an additional 
layer of defence against unwanted bacteria by en-
trapping bacteriophages in close vicinity of the seeds 
and root tips. In our study, all tested phages bound to 
Arabidopsis seeds with mucilage. When the mucilage 
was mechanically removed, phage binding decreased 
significantly. However, phage-specific differences 
were noted. While phage Athelas and other members 
of the Autographiviridae family showed a very strong 
dependence on mucilage for binding, phage Alfirin 
also showed interaction with the seed surface in the 
absence of the mucilage. It would be interesting to in-
vestigate if the phage-mucilage dependency emerged 
as an adaptive trait for some phages that have become 
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integral to the plant-microbiome through co-evolution 
during the process of plant domestication (Cordovez 
et al., 2019).

In the study of the adhesion process, we differen-
tiated between two mechanisms: (i) adhesion based 
on a physical structure of the polymer-matrix, where 
the matrix would function as a mesh with a pore size 

between 2 and 50 nm (Sanka et al., 2017) or (ii) adhe-
sion based on chemical interactions between phages 
and seed mucilage components. The latter was ap-
proached by the systematic testing of seed coat 
mutants of the model plant A. thaliana. Here, phage 
Athelas showed the strongest effect on the trans-
parent testing galba 1 (ttg1) mutant, followed by the 

F I G U R E  7   Local phage amplification acceleration with a non-virulent bacterial host. (A) Leaf area after 14 days (N = 25) the experiment 
was performed in triplicates. ANOVA; F (4, 23) = 5734; *p < 0.05; **p < 0.01; ***p < 0.001; ns = not significant. (B) Amount of plants with active 
phages after 14 days, quantified were plants showing lysis zones upon plating on a double agar containing Atum. Shown is the mean of 
25 plants, with standard deviation. (C) Images of seedlings transferred to a bacterial lawn. The treatment conditions consisted of Control: 
plants alone; Phage Alfirin: seeds treated with the phage only; Atum OD600 0.4 is using a virulent version of the pathogen; Atum ΔpTi OD 
0.01—Agrobacterium fabrum C58 ΔpTi, ‘Booster’ uses a non-virulent version of Atum ΔpTi OD600 0.01 and phage Alfirin at an MOI 5. Lysis 
zones indicate phage presence.
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cellulose synthase 5 (cesa5) and subtilisin protease 
1.7 (sbt 1.7) mutants. Both the ttg1 and the sbt1.7 mu-
tants are indicative of the fact that mucilage forma-
tion/release is a prerequisite for adhesion of phage 
Athelas. TTG1 is a master regulator in Arabidopsis 
involved in many processes, including the produc-
tion of the SCM (Ranocha et  al.,  2014), and its de-
letion leads to seeds that produce no mucilage. The 
deletion of sbt 1.7 is described as a non-release 
phenotype because it is needed for the regulation 
of pectin methylesterases, which are crucial for mu-
cilage release in A. thaliana seeds (Rautengarten 
et  al.,  2008). Most interestingly cesa5 which is still 
releasing the mucilage, but possesses less diffusible 
cellulose in the mucilage (Griffiths & North,  2017), 
shows a significant reduction in binding of phage 
Athelas. This result suggested that phage Athelas 
requires this diffusible cellulose fraction for binding 
to the seed surface. This interaction could potentially 
be based on the attachment of phage tail fibres to 
the glucose units of the diffusible cellulose. Further 
evidence for this hypothesis is supported by the fact 
many bacterial genes are capable to produce cellu-
lose as part of their biofilm and phages interact with 
them (Visnapuu et al., 2022). This was also reported 
for the plant pathogen Pseudomonas syringae (Dutta 
et  al.,  2019; Pérez-Mendoza et  al.,  2019). A similar 
observation was recently made for Erwinia amylovora 
phage S6 (Knecht et al., 2022). Nevertheless, further 
studies will have to test whether this hypothesis holds 
true and to identify the specificity determinants for 
this transient interaction.

While phages Alfirin and Pfreifenkraut showed high 
stability on seeds, it remains unclear why the infectivity 
of phage Athelas dropped drastically on seeds already 
after 14 days of storage, while it showed high stability 
in phage buffer (Figure  6). One possible explanation 
could be that the mucilage-polysaccharides are able to 
trigger the DNA ejection. A similar observation was de-
scribed for bacterial LPS-triggered release of the phage 
genome in podovirions (Andres et al., 2010; González-
García et  al.,  2015; Molineux,  2001). Another possi-
bility could be that the drying process impacts phage 
Athelas stability, which could be theoretically overcome 
by adding stabilizers used in classical phyllosphere-
phage formulations (Balogh et al., 2010).

The stability and titre of phages on seed surfaces 
can certainly be improved by optimizing seed coating 
formulations. Here, knowledge gained regarding the 
specificity determinants of chemical interactions will 
provide a powerful basis to improve the composition of 
seed coatings. This could be especially useful for plants 
that do not produce mucilage naturally. First attempts 
into the direction of artificial seed coating with chemical 
formulations have been reported, for example, in maize 
by chemical deployment of phages with polyvinylalco-
hol (Kimmelshue et al., 2019). Further, the application 

of non-virulent host species could serve as a way to 
amplify the effective phage titre in the proximity to the 
plant and thereby enhance protection. Nevertheless, 
the effect of the bacterium used for phage amplifica-
tion must be considered carefully as emphasized by 
the results of this study. Apparently, the presence of a 
bacterium that lacks its virulence clusters can still have 
a negative effect on plant growth, potentially by acti-
vating a more general plant response to the detection 
of microbe associated molecular patterns, for exam-
ple, flagellin or LPS (DeFalco & Zipfel, 2021; Newman 
et al., 2013).

In summary, the results reported in this study show 
effective binding of phages to Arabidopsis seeds 
and further emphasized that some phages, particu-
larly podoviruses belonging to the Autographiviridae, 
strongly depend on chemical interactions with the 
SCM. Phage-based biocontrol on the seed level cer-
tainly has great potential for application. The chemical 
universality of some carbohydrates present in bacterial 
LPS might allow the targeted binding of phages to plant 
surfaces displaying similar sugar moieties. A better un-
derstanding of the molecular basis for these transient 
interactions, therefore, has a high potential for the es-
tablishment of targeted phage delivery strategies with a 
high relevance for applications in agriculture and medi-
cine. Further clearing of seeds with phages was shown 
to be an effective strategy for selective seed cleaning 
against pathogenic bacteria, leaving the beneficial mi-
crobiota intact.

The ecological significance of our discovery that mu-
cilage can bind phages raises important questions that 
merit further investigation. Is this binding merely coin-
cidental, or is there a conserved chemical nature in the 
mucilage-microbe interface across different kingdoms 
of life? Would this also lead to a transmission of phages 
from plants to the next generation? These questions 
are certainly highly relevant in the context of plant-
microbe interactions but also in the context of effective 
phage-based biocontrol strategies.
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